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Optimizing traffic lights in a cellular automaton model for city traffic
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We study the impact of global traffic light control strategies in a recently proposed cellular automaton model
for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model
for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square
lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting
from a simple synchronized strategy, we show that the capacity of the network strongly depends on the cycle
times of the traffic lights. Moreover, we point out that the optimal time periods are determined by the
geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchro-
nized traffic lights, the derivation of the optimal cycle times in the network can be reduced to a simpler
problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to
obtain an enhanced throughput in the model, improved global strategies are tested, e.g., green wave and
random switching strategies, which lead to surprising results.
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I. INTRODUCTION

Mobility is nowadays regarded as one of the most sign
cant ingredients of a modern society. Unfortunately, the
pacity of the existing street networks is often exceeded
urban networks, the flow is controlled by traffic lights an
traffic engineers are often forced to question if the capa
of the network is exploited by the chosen control strate
One possible method to answer such questions could be
use of vehicular traffic models in control systems as well
in the planning and design of transportation networks.
almost half a century, there were strong attempts to deve
a theoretical framework of traffic science. Up to now, the
are two different concepts for modeling vehicular traffic~for
an overview, see@1–8#!. In the ‘‘coarse-grained’’ fluid-
dynamical description, traffic is viewed as a compressi
fluid formed by vehicles that do not appear explicitly in t
theory. In contrast, in the ‘‘microscopic’’ models, traffic
treated as a system of interacting particles where attentio
explicitly focused on individual vehicles and the interactio
among them. These models are therefore much better s
for the investigation of urban traffic. Most of the ‘‘micro
scopic’’ models developed in recent years are usually form
lated using the language of cellular automata~CA! @9#. Due
to the simple nature, CA models may be used very efficien
in various applications with the help of computer simu
tions, e.g., large traffic network may be simulated in multip
realtime on a standard PC.

In this paper, we analyze the impact of global traffic lig
control strategies, in particular, synchronized traffic ligh
traffic lights with random offset, and with a defined offset
a recently proposed CA model for city traffic~see Sec. II for
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further explanation!. Chowdhury and Schadschneider~CS!
@10,11# combine basic ideas from the Biham-Middleto
Levine ~BML ! @12# model of city traffic and the Nagel
Schreckenberg~NaSch! @13# model of highway traffic. This
extension of the BML model will be denoted ChSch mod
in the following.

The BML model@12# is a simple two-dimensional~square
lattice! CA model. Each cell of the lattice represents an
tersection of an east-bound and a north-bound street.
spatial extension of the streets between two intersection
completely neglected. The cells~intersections! can either be
empty or occupied by a vehicle moving to the east or to
north. In order to enable movement in two different dire
tions, east-bound vehicles are updated at every odd disc
time step whereas north-bound vehicles are updated at e
even time step. The velocity update of the cars is reali
following the rules of the asymmetric simple exclusion pr
cess~ASEP! @14#: a vehicle moves forward by one cell if th
cell in front is empty, otherwise, the vehicle stays at its a
tual position. The alternating movement of east-bound a
north-bound vehicles corresponds to a traffic light’s-cycle
one time step. In this simplest version of the BML mod
lane changes are not possible, and therefore, the numb
vehicles on each street is conserved. However, in the last
years, various modifications and extensions@15–20# have
been proposed for this model~see also@8# for a review!.

The NaSch model@13# is a probabilistic CA model for
one-dimensional highway traffic. It is the simplest know
CA model that can reproduce the basic phenomena enc
tered in real traffic, e.g., the occurrence of phantom ja
~‘‘jams out of the blue’’!. In order to obtain a description o
highway traffic on a more detailed level, various modific
tions to the NS model have been proposed and many
models were suggested in recent years~see@21–25#!. The
motion in the NS model is implemented by a simple set
rules. The first rule reflects the tendency to accelerate u
the maximum speedvmax is reached. To avoid accident
©2001 The American Physical Society32-1
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which are forbidden explicitly in the model, the driver has
brake if the speed exceeds the free space in front. This b
ing event is implemented by the second update rule. In
third update rule, a stochastic element is introduced. T
randomizing takes into account the different behavioral p
terns of the individual drivers, especially nondeterminis
acceleration as well as overreaction while slowing dow
Note, that the NaSch model withvmax51 is equivalent to the
ASEP which, in its deterministic limit, is used for the mov
ment in the BML model.

One of the main differences between the NaSch mo
and the BML model is the nature of jamming. In the NaS
model, traffic jams appear because of the intrinsic stoch
ticity of the dynamics@26,27#. The movement of vehicles in
the BML model is completely deterministic and stochastic
arises only from the random initial conditions. Additionall
the NaSch model describes vehicle movement and inte
tion with sufficiently high detail for most applications, whil
the vehicle dynamics on streets is completely neglected
the BML model ~except for the effects of hard-core excl
sion!. In order to take into account the more detailed dyna
ics, the BML model is extended by inserting finite stree
between the cells. On the streets, vehicles drive in ac
dance to the NS rules. Further, to take into account inte
tions at the intersections, some of the prescriptions of
BML model have to be modified. At this point, we want
emphasize that in the considered network, all streets
equal in respect to the processes at intersection, i.e.
streets or directions are dominant. The average dens
traffic light periods, etc., for all streets~intersections! are
assumed to be equal in the following.

The paper is organized as follows: In the next section,
definition of the model is presented. It will be shown tha
simple change of the update rules is sufficient to avoid
transition to a completely blocked state that occurs at a fi
density in analogy to the BML model@18–20#. Note, that
this blocking is undesirable when testing different traf
light control strategies and is therefore avoided in our ana
ses. In Sec. III, different global traffic light control strategi
are presented and their impact on the traffic will be show
Further it is illustrated that most of the numerical resu
affecting the dependence between the model parameters
the optimal solutions for the chosen control strategies may
derived by simple heuristic arguments in good agreem
with the numerical results. In the summary, we will discu
how the results may be used benefitably for real urban tra
situations and whether it could be useful to consider
proved control systems, e.g., autonomous traffic light c
trol.

II. DEFINITION OF THE MODEL

The main aim of the city model proposed in@10# is to
provide a more detailed description of city traffic than that
the original formulation of the BML model. Especially th
important interplay of the different time scales set by t
vehicle dynamics, distance between intersections and c
times may be studied in the ChSch model. Therefore, e
bond of the network is decorated withD21 cells represent-
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ing single streets between each pair of successive inter
tions. Moreover, the traffic lights are assumed to flip perio
cally at regular time intervalsT instead of alternating every
time step (T.1). Each vehicle is able to move forward in
dependently of the traffic light state, as long as it reache
site where the distance to the traffic light ahead is sma
than the velocity. Then it can keep on moving if the light
green. Otherwise, it has to stop immediately in front of it

As one can see from Fig. 1, the network of streets bu
a N3N square lattice, i.e., the network consist ofN north-
bound andN east-bound street segments. The simple squ
lattice geometry is determined by the fact that the length
all 2N2 street segments is equal and the streets segment
assumed to be parallel to thex and y axis. In addition, all
intersections are assumed to be equitable, i.e., there ar
main roads in the network where the traffic lights have
higher priority. In accordance with the BML model, stree
parallel to thex axis allow only single-lane east-bound traffi
while the ones parallel to they axis manage the north-boun
traffic. The separation between any two successive inter
tions on every street consists ofD21 cells so that the tota
number of cells on every street isL5ND. Note that forD
51, the structure of the network corresponds to the BM
model, i.e., there are only intersections without roads c
necting them.

The traffic lights are chosen to switch simultaneously
ter a fixed time periodT. Additionally, all traffic lights are
synchronized, i.e., they remain green for the east-bound
hicles and they are red for the north-bound vehicles and v
versa. The length of the time periods for the green lig
does not depend on the direction and thus the ‘‘green lig

FIG. 1. Snapshot of the underlying lattice of the model. In th
case, the number of intersections in the quadratic network is se
N3N516. The length of the streets between two intersection
chosen toD2154. Note that vehicles can only move from west
east on the horizontal streets or from south to north on the ver
ones. The magnification on the right side shows a segment
west-east street. Obviously, the traffic lights are synchronized
therefore all vehicles moving from south to north have to wait un
they switch to ‘‘green light.’’
2-2
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OPTIMIZING TRAFFIC LIGHTS IN A CELLULAR . . . PHYSICAL REVIEW E 64 056132
periods are equal to the ‘‘red light’’ periods. At this point,
is important to premention that a large part of our investi
tions will consider a different traffic light strategy. In th
following, the strategy described above will be called ‘‘sy
chronized strategy.’’ In addition, we improved the traffi
lights by assigning an offset parameter to every one. T
modification may be used, for example, to shift the switch
two successive traffic lights in a way that a ‘‘green wav
may be established in the complete network. The differ
‘‘traffic light strategies’’ used here are discussed in detail
Sec. III.

As in the original BML model, periodic boundary cond
tions are chosen and the vehicles are not allowed to tur
the intersections. Hence, not only the total numberNv of
vehicles is conserved, but also the numbersNx and Ny of
east-bound and north-bound vehicles, respectively. All th
numbers are completely determined by the initial conditio
In analogy to the NS model, the speedv of the vehicles may
take one of thevmax11 integer values in the rangev
50,1, . . . ,vmax. The dynamics of vehicles on the streets
given by the maximum velocityvmax and the randomization
parameterp of the NaSch model that is responsible for t
movement. The state of the network at timet11 may be
obtained from that at timet by applying the following rules
to all cars at the same time~parallel dynamics!:

Step 1:Acceleration:

vn→min~vn11,vmax!.

Step 2:Braking due to other vehicles or traffic light state
Case 1: The traffic light is red in front of thenth vehicle:

vn→min~vn ,dn21,sn21!.

Case 2: The traffic light is green in front of thenth ve-
hicle:

If the next two cells directly behind the intersection a
occupied

vn→min~vn ,dn21,sn21!,

othrewise

vn→min~vn ,dn21!.

Step 3:Randomization with probability p:

vn→max~vn21,0!.

Step 4:Movement:

xn→xn1vn .

Here, xn denotes the position of thenth car anddn
5xn112xn the distance to the next car ahead~see Fig. 1!.
The distance to the next traffic light ahead is given bysn .
The length of a single cell is set to 7.5 m in accordance
the NS model. The maximal velocity of the cars is set
vmax55 throughout this paper. Since this should correspo
to a typical speed limit of 50 km/h in cities, one time st
approximately corresponds to 2 s in real time. In the initial
05613
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state of the system,Nv vehicles are distributed among th
streets. Here, we only consider the case where the numb
vehicles on east-bound streetsNx5Nv/2 is equal to the one
on north-bound streetsNy5Nv/2. The global density then is
defined byr5Nv /N2(2D21) since in the initial state, the
N2 intersections are left empty.

Note that we have modified Case 2 of Step 2 in comp
son to @11#. Due to this modification, a driver will only be
able to occupy an intersection if it is assured that he
leave it again. A vehicle is able to leave an intersection if
least the first cell behind it will become empty. This is po
sible for most cases except when the next two cells dire
behind the intersection are occupied. The modification its
is done to avoid the transition to a completely blocked st
~gridlock! that may occur in the original formulation of th
ChSch model. Further in the original formulation@10#, the
traffic lights mimick effects of a yellow light phase, i.e., th
intersection is blocked for both directions one second bef
switching. This is done to attenuate the transition to
blocked state~gridlock!. Since the blocked states are com
pletely avoided in our modification, we do not consider
yellow light anymore. The reason for avoiding the gridlo
situation in our considerations is that we focus on the imp
of traffic light control on the network flow, so that a trans
tion to a blocked state would prevent it from explorin
higher densities. Besides, relatively small densities are m
relevant for applications to real networks. However, taki
into account that situations where cars are not able to e
an intersection are extremely rare, it is clear that this mo
fication does not change the overall dynamics of the mo
Moreover, we compared the original formulation of th
ChSch model and the modified one by simulations and fo
no differences except for the gridlock situations that app
in the original formulation due to the stronger interactio
between intersections and roads.

III. STRATEGIES

As mentioned before, our main interest is the investig
tion of global traffic light strategies. We want to find met
ods to improve the overall traffic conditions in the cons
ered model. At this point, it has to be taken into account t
all streets are treated as equivalent in the considered netw
i.e., there are no dominant streets. This makes the optim
tion much more difficult and implies that the green and r
phases for each direction should have the same length. F
main road intersection with several minor roads, the to
flow usually may be improved easily by optimizing the flo
on the main road.

We first study the dependence between traffic light pe
ods and aggregated dynamical quantities such as flow
mean velocity. It is shown that investigating the simp
problem of a single road with one traffic light~i.e., N51)
operating as a defect is sufficient to give appropriate res
concerning the overall network behavior. The results can
used as a guideline to adjust the optimal traffic light perio
in respect to the model and network parameters. Further
show that a two-dimensional green wave strategy may
established in the whole network giving much improveme
2-3
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ELMAR BROCKFELD et al. PHYSICAL REVIEW E 64 056132
in comparison to the synchronized traffic light switchin
Finally, we demonstrate that switching successive tra
lights with a random shift may be very useful to create
more flexible strategy that does not depend much on
model and network parameters. Throughout the paper,
will always assume that the duration of green light is equa
the duration of the red light phase.

A. Synchronized traffic lights

The starting point of our investigations is the smalle
possible network topology of the ChSch model. Obvious
this is a system consisting of only one east-bound and
north-bound street, i.e.,N51, linked by a single intersection
As a further simplification, we focus on only one of the tw
directions of this ‘‘mini’’ network, i.e., a single street wit
periodic boundary conditions and one signalized cell in
middle. It is obvious that in the case of one single traffic lig
the term ‘‘synchronized’’ is a little bit confusing, but th
relevance of this special case to large networks with sync
nized traffic lights will be discussed later.

Figure 2 shows the typical dependence between the
periods of the traffic lights and the mean flow in the syste
For low densities, one finds a strongly oscillating curve w
maxima and minima at regular distances. In the case o
small fluctuation parameterp, similar oscillations may be
even found at very high densities. For an understanding
the underlying dynamics leading to such strong variations
the mean flow, we take a look into the microscopic structu
This will allow us to formulate a simple phenomenologic
approach that shows a very good agreement with nume
results. Note that we restrict our investigations to low den
ties because for free-flow densities,1 vehicles are not con
stricted by jamming due to the model dynamics, but rat
by ‘‘red’’ traffic lights. Hence, the free-flow density rang
shows the largest potential for flow optimization. Later o
we will point out the origin of the oscillating flow even a
very high densities, which is completely different to the fre
flow case.

To give an impression of the influence of the cycle tim
on the vehicle movement a schematic representation of
observed street is depicted in Fig. 3. This picture covers t
cal dynamical patterns occurring in the system due to
hicles that are restricted in their movement by the ‘‘r
light.’’ Based on these scenarios, a simple phenomenolog
approach is presented in the following that is able to exp
the dependence between vehicle movement and mode
rameters. We assume that during one traffic light cycle, fr
flowing vehicles form a stable cluster with a width that
approximately constant. Further, we assume that a ph
separation between free-flowing and jammed vehicles ta
place at high densities. The legitimation for these assu
tions is given by the fact that the vehicle movement is tr
gered by the traffic light, i.e., vehicles are gathered in fr

1Here, states are denoted as free-flow states if the mean dens
smaller than the density corresponding to the maximum flow of
underlying NaSch model.
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of the them and hence fluctuations cannot spread out
addition, the cycle length is of the order of the street len
or more precisely, the travel time from one intersection to
next. It makes no sense to consider cycle times that are m
larger than the travel time that is proportional to the length
the street segment. Note that the limitT→` corresponds to
the case in which one direction of the network is free
move all the time, while on the other direction it comes to
complete stop. The resulting flow then is exactly half of t
flow found in the underlying NaSch model.

In the following, we focus on five scenarios~a!–~e!. The
cases~a!, ~b!, and~c! describe the derivation of the maxima

is
e

FIG. 2. The mean flowJ of the smallest network segment~one
single intersection,N51) is plotted for different global densities a
a function of the cycle lengthT. For the top part of the figure, we
use a randomization parameter ofp50.1, while in the bottom plot,
higher fluctuationsp50.5 are considered. In both cases, the fre
flow regime ~density r50.05) shows a similar shape. The hig
density regime reflects a stronger dependence on the randomiz
parameter, but also for the higherp strong variations of the mean
flow may be found. The length of the street isL5100 and the flow
is aggregated over 100000 time steps.
2-4
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FIG. 3. Schematic representation of the v
hicle movement on the east-bound street for d
ferent cycle times. Standing cars are represen
by dark gray rectangles (x axis! while moving
vehicle clusters are bright gray rectangles. T
traffic light is placed in the middle of every figur
~time runs along they axis!. Its state is indicated
by the color of the vertical rectangle. Green lig
corresponds to the white colored area of the tr
fic light, while red light is painted in dark. At this
point, one has to take into account that the co
sidered street has periodic boundary conditio
and therefore, vehicles leaving the right end
every scenario~a!–~e! will return after a certain
time on the left side.
n
ta
tl

m

-

for
ed

m

by
minima of the (v,T) curve, ~d! gives a calculation of the
mean velocity between maxima and minima, and~e! finally a
calculation of the mean velocity between the minima a
maxima. We now discuss these scenarios in more de
Note that they are quasideterministic and may be sligh
modified in the presence of fluctuations.

~a! The time a free-flowing vehicle requires to move fro
one intersection to the succeeding one~one full turn on the
periodic street forN51) is equal to

Tfree5
D

v free
, ~1!
05613
d
il.
y

wherev free5vmaxp is the free-flow velocity of the underlying
NS model. In Fig. 3~a!, a situation is displayed where ve
hicles organize in a cluster~light gray rectangle! which can
move ahead all the time. This is only possible if the time
one complete traffic light cycle, i.e., including green and r
phase, is equal to the cycle time of a vehicleTfree5Tgreen

1Tred52T. Obviously, this case corresponds to a maximu
in flow whereby the traffic light period is given byT
5Tfree/2. Additionally, there are further maxima whenTfree

5n(Tgreen1Tred) with (n50,1,2, . . . ).Thus, the traffic light
period corresponding to a maximal system flow is given
2-5
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Tmax5
Tfree

2n
. ~2!

With similar arguments, the occurrence of minima may
explained. These minima correspond to situations where
traffic lights switch exactly to red when a vehicle clust
reaches a intersection. It is clear that the assumptions a
are only valid for very short cycle times (2T<Tfree). In the
following, we will concentrate on more realistic ‘‘larger’
periods, i.e. 2T>Tfree.

~b! In Fig. 3~b!, a situation is shown where vehicles a
gathered in front of a red light. After the traffic light switche
to green, the vehicles start moving. Then it switches bac
red exactly at the time when the first car of the movi
vehicle cluster reaches the intersection again. Now the c
plete vehicle cluster comes to rest and has to wait until
traffic light switches again to green to continue the mo
ment. Obviously, this case corresponds to a minimum in
flow. The corresponding cycle time is given by the followin
assumptions. For this scenario, it is sufficient to focus on
first car of the cluster. At the beginning, the first vehicle h
to accelerate to its maximum velocity. This acceleration p
cess will take on averageTacc5vmax/(12p) time steps. After
that, the vehicle has to trespass the rest of the street un
reaches the intersection again. The mean velocity on that
of the road is given byv free. The length of this road segmen
is given by the length of the street minus the distance that
vehicle has covered during its acceleration phase. There
the time Tfirst5@D2Tacc(vmax11)/2#/v free elapses until the
intersection is reached. In summary, if the chosen cycle t
is equal to

Tmin5Tacc1Tfirst1nTfree, ~3!

the system flow is minimal. The last termnTfree ~with n
50,1,2. . . ) takes into account traffic light periods that a
larger than the required time to move from one intersect
to the succeeding one or to make one turn on a perio
system. That way the vehicle cluster is able to performn
‘‘turnarounds’’ before it has to stop immediately in front o
the ‘‘red light.’’ These minima at regular distances ofTfree
time steps may be easily identified in Figs. 2,4.

~c! In accordance with the occurring minima, one m
also find maxima at regular distances~see Figs. 2, 4!. These
maxima correspond to situations where the length of
green time intervals is sufficiently large so that the last
hicle of a moving cluster is able to pass the intersect
before the traffic light switches to red. To derive the cyc
times corresponding to this situation, one has to focus on
last car. Before the traffic light switches to green there
Nwait vehicles standing in front of it~dark gray rectangle!
@see Fig. 3~c!#. After the switch to green, the last vehicle
the cluster has to wait on averageTwait5(Nwait21)/Jout time
steps before the vehicle in front started to move (Jout is equal
to the flow out of a jam!. Then, furtherTacc @see case~b!#
time steps are needed for the vehicle to accelerate to
maximum velocity. From then on, the vehicle has to rea
the first cell~behind the intersection! of the succeeding stree
within the remaining ‘‘green light’’ interval. The require
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time to cover this part of the road is given byTlast5@D
1Nwait2Tacc(vmax11)/2#/v free. Note that in comparison to
case~b!, the last vehicle has to cover a slightly larger d
tance than the first one due to its shifted starting position
aboutNwait cells. Therefore, the system is in a state with
maximum flow for the following cycle times

FIG. 4. Top: The mean velocityvmean for a minimal network
N51 is plotted against the cycle timeT. The street has a length o
L5100 cells and the density is set tor50.05~free-flow case!. One
can clearly see that the phenomenological approximation ag
very well with the simulation data. Bottom: In order to show ho
the small network segment withN51 ~considered in the heuristic
approach! compares to the complete ChSch city network model,
plotted the mean flow against the traffic light periodT. This is done
once for the ‘‘mini network’’ consisting of one single intersectio
with a street length ofL5100 cells and for a relatively large ne
work consisting ofN3N5100 intersections with 2N2 street seg-
ments each ofD5100 cells in length. We consider two differen
densities, one of them corresponding to the free-flow densitr
50.05 and the other to a high-density stater50.7. Obviously, the
deviations in the curves between the large network and the ‘‘m
network’’ are negligible in both density regimes. The randomiz
tion parameter isp50.1 and the maximum velocity isvmax55 in
both diagrams.
2-6
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Tmax5Twait1Tacc1Tlast1nTfree. ~4!

As in ~b!, the last termnTfree takes into account large cycle
where the vehicle cluster is able to maken full turns before
the pictured situation occurs.

~d! We used the previous cases~a!–~c! as a basis for
simple heuristic arguments to derive the cycle times co
sponding to maximal and minimal mean flow states in
system. In the remaining cases, we will show that even
complete dependence of the mean velocity on the cycle t
may be obtained from simple phenomenological assu
tions. For this purpose, we focus on a situation where
vehicle cluster is able to cross the intersection within
‘‘green light,’’ i.e., the traffic light does not switch when th
vehicle cluster occupies the intersection. After the vehi
cluster has passed the intersection at mostn times the ve-
hicles will come to a rest in front of a ‘‘red light.’’ The
remaining waiting time depends now on the chosen cy
time. If the traffic light switches to red immediately befo
the vehicles reach the intersection, the situation correspo
to minimal flow @see~b!#, i.e., the vehicles must wait for th
complete cycle timeT. Contrary, if the traffic light switches
directly after the cluster has trespassed, the intersection
situation corresponds to the case of maximal flow@see~c!#,
i.e., the vehicle cluster may perform a complete turn withi
‘‘red light’’ phase and therefore the remaining waiting tim
gets minimal. The more general case is given by a situa
between maximal and minimal flow, i.e., the vehicle clus
is able to pass the intersection and then after a certain
the traffic light switches to ‘‘red light.’’ To obtain the mea
velocity of the vehicles within a complete cycleTcycle52T,
neither one has to take into account the waiting times
vehicles in the starting phase nor the acceleration proces
the vehicles until the maximum velocity is reached. In fa
only the driven distance that is equal ton turnarounds for
every vehicle must be considered in order to obtain the m
velocity. Note that each vehicle starts its movement out o
certain position in a waiting queue in front of the traffic lig
and will occupy exactly the same position when it comes
a rest again. The mean velocity is given by

v̄max-min~T,n!5nD/2T. ~5!

With Eq. ~5!, it is possible to plot the mean velocity of th
system against the traffic light periods only between eachnth
maximum andnth minimum of the curve. The shape of th
curve between thenth minimum and the (n11)-th maxi-
mum will be discussed in~e!. One should keep in mind tha
the scenarios~b!–~e! assumeT>Tfree.

~e! In Fig. 3~e!, a situation is pictured where the traffi
light switches to ‘‘red light’’ within the time interval at
which the vehicle ‘‘cluster’’ crosses the intersection. As
consequence, the fraction of vehicles in front of the tra
light will come to a stop while the rest of the vehicles behi
it is able to move on until they reach the traffic light aga
~periodic boundary conditions!. The fact that only a fraction
of vehicles is able to completen cycles whereas others ca
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completen11 cycles before they are forced to stop leads
a simple linear dependence between the mean velocity
the cycle time in this area.

In the left part of Fig. 4 we show how the mean veloci
of the north-bound street of the considered ‘‘mini network
depends on the cycle time and compare these results with
phenomenological predictions made in~a!–~e!. As one can
see, the theoretical curve shows an excellent agreement
the simulation data. Not only the positions of the maxim
and minima are predicted by theory, but also the shape of
curve between the extrema shows a very good agreem
with the numerical results. At this point, we want to emph
size that we checked the mean velocity on the east-bo
street as well and found exactly the same results. This is
surprising if one takes into consideration that the duration
the traffic light cycles of both directions are the same, i
the time of ‘‘red light’’ is equal to the ‘‘green light’’ and
when the north-bound direction switches to green then
east-bound direction switches to red and vice versa. Th
fore the two different directions may be considered as alm
decoupled and independent. Furthermore, the right par
Fig. 4 shows that the results obtained from the obser
‘‘mini network’’ are completely transferable to large ne
works. Thus, we stress that the assumptions made in~a!–~e!
may be used to adjust the optimal cycle times in large n
works, i.e., in the ChSch model with synchronized traf
lights. The excellent agreement between the small and
large network situation may be ascribed to the synchroni
strategy. In fact, there is no difference for a vehicle a
proaching an intersection that is a part of a large network
approaching the only existing intersection due to the perio
boundary conditions. The state of the traffic lights will be t
same in both cases because of the synchronized stra
Moreover, it is very interesting that although the vehic
movement is stochastic~NS model! and the mean density o
the streets in the network fluctuates, there is no local conc
tration of vehicles in the network leading to remarkable d
viations in the flow in comparison to the idealized ‘‘min
network’’ where the density on the streets is fixed. Note t
this is in contrast to the original formulation of the ChS
model where a blockage of intersections is allowed. The
fore, fluctuations may lead to a complete breakdown of fl
at high densities where standing vehicles are gathered in
part of the network. It seems that the signalized intersecti
of the model interact with the density fluctuations in a w
that the vehicles are equally distributed in the network. T
extreme fluctuations in the distribution do not play an imp
tant role in progress of time because the blockage of an
tersection due to such fluctuations is excluded here~see Sec.
II ! and so the density on the roads fluctuates around a m
value.

The results obtained by the phenomenological appro
confirm that the dynamics in the network is driven by t
traffic lights and are mainly determined by the distance
tween them and the density of cars. It seems that the in
ence of the model chosen for the vehicle movement play
secondary role. We only assume the mean velocity of fr
flowing vehicles and the outflow out of a jam as paramet
for the movement from the underlying NaSch model.
2-7
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verify this, we investigate a comparable network scena
where the vehicle movement is realized by the VDR mo
@21#. A major difference to the NaSch model is the occu
rence of large-phase separated jams and metastable sta
the absence of intersections. However, we found qua
tively the same results for both models assuming the outfl
of a jam and the mean velocity as parameters. One reas
that the metastable states of the VDR model are destroye
disturbances caused by the traffic lights.

So far we have only observed the free-flow case of
ChSch model in our scenarios. But also for high densit
one may find a strong dependence of the mean flow in
system on the chosen cycle times~see Fig. 2!. Obviously, for
high densities, this dependence is not caused by free-flow
vehicle clusters passing or an intersection, but rather, is
to the movement of large jams gathered in front of the tra
lights. These jams move oppositely to the driving directio
For densities slightly above the free-flow density~see r
50.2 in Fig. 2! there are no characteristic maxima or minim
in the mean flow. Here, the remaining jams in the system
small compared to the cycle times, i.e., the time a jam w
block an intersection is negligibly small. Furthermore, f
decreasing traffic light cycles, large jams are divided in
smaller ones by the short-cycle times. Thus, the mean fl
increases slightly with higher-cycle times in this density a
because the number of standing cars decreases. At inte
diate densities~seer50.5 in Fig. 2! one may find a similar
behavior. As forr50.2, the number of jams decreases w
increasing cycle times and the flow grows slightly until
breaks down at a certain value. This breakdown may be
plained as follows: At high cycle times, only one jam r
mains between two intersections because the ‘‘red li
phase’’ is large enough so that all vehicles are gathere
front of the traffic lights. The breakdown finally occurs whe
the ‘‘red light phase’’ is even larger than the time needed
conglomerate all vehicles in front of it. As a consequen
the vehicles have to wait considerably longer than they
able to move when further increasing the cycle time. N
that the motion at ‘‘green light’’ is hindered because of t
fact that for the considered densities the jam is relativ
large. Therefore, an intersection is blocked when it
reached by the backward moving jam for a long part of
‘‘green light phase.’’ It is interesting that for high densitie
~see r50.7 in Fig. 2!, a strong dependence between t
cycle time and the mean flow may be found with charac
istic maxima and minima similar to the free-flow case. Th
is caused by the fact that at high densities, the dynamic
the system are completely determined by the movement
jam. For example, if the length of one cycle~red light and
green light! is chosen in such a manner that it is equal to
time the downstream front of a jam needs to move from o
intersection to the next one, the large jam will block t
intersection when it is red anyway. This corresponds t
maximum in the global network flow. The fraction of tim
when the ‘‘red light’’ has no influence on the mean flo
because it is blocked by a jam determines the shape of
curve between the extrema similar to the free-flow scenar
For a more detailed discussion, see@28#. At this point, we
want to emphasize that high densities are more difficul
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investigate because the jamming in the NaSch mode
strongly determined by the fluctuation parameter. For hig
p, spontaneous jams may occur even in the outflow region
a jam and therefore jams are not compact anymore. At h
densities, one may see a relatively strong influence op,
while in the free-flow case, the value of the randomizati
parameterp does not play an important role.

B. Green wave strategy

In the previous section, we discussed the dependence
tween traffic light periods and throughput in the ChS
model for synchronized traffic lights. It was shown that t
whole problem may be reduced to an analysis of a sin
segment~i.e., N51) of the network. This indicates that syn
chronizing the traffic lights is an ineffective strategy that
not capable of bringing an additional gain out of the netwo
topology. Further, it was shown that particularly at free-flo
densities there are strong oscillations in the throughput of
network depending on the chosen traffic light periods. A
other disadvantage is that, as one can see in Fig. 2, the
maxima are located at unrealistic short cycle times for
chosen street length.

In the following, we will introduce a simple ‘‘green
wave’’ strategy in order to improve the overall netwo
throughput. Therefore, the ChSch model is enhanced by
fic lights that are not enforced to switch simultaneously. T
intersections are denoted with indicesi , j where i
50,1, . . . ,N21 represents the rows andj 50,1, . . . ,N21
the columns of the quadratic network. In addition, an in
vidual offset parameterDTi , j is introduced and assigned t
every intersection. This offset parameter is used to imp
ment a certain time delayTdelay between the traffic light
phases of two successive intersections. The offset param
itself may take the valuesDTi , j50, . . . ,2T. Note that a
larger DTi , j has no effect because 2T corresponds to one
complete cycle of a traffic light. The main intention whe
establishing a ‘‘green wave’’ on an intersected street is
keep a cluster of vehicles in motion. It is obvious that t
optimal strategy is to adjust the time delay between two s
cessive intersections, such that the first vehicle of a mov
cluster trespassing an intersection will arrive at the next t
fic light exactly at the time when it switches to ‘‘green.
This delay is just the time a free-flowing vehicle needs
move from one intersection to the succeeding one,
Tfree5D/v free. Thus, this is the optimal time delayTdelay
between two intersections. Since we are interested in con
tuting the ‘‘green wave’’ in the whole network, two direc
tions must be taken into account. We choose the intersec
at the bottom-left corner of the network as the starting po
with no time delayDT0,050. Then the offset in the first row
will be chosen as described, i.e., the time delay between
successive intersections is in the optimal case equal toTfree.
After the first row is initialized, every intersection in this ro
will be seen as a new starting point to initialize the cor
sponding columns. In summary, the offset parameter of
intersections is given by

DTi , j5@~ i 1 j !Tdelay#mod~2T!, ~ i , j 50,1, . . . ,N21!,
~6!
2-8
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with the optimal offset parameter given byTdelay5Tfree, i.e.,

DTi , j5S ~ i 1 j !
D

v free
Dmod~2T!, ~ i , j 50,1, . . . ,N21!.

~7!

Using this method, a two-dimensional ‘‘green wave’’ stra
egy may be established in the ChSch model.

To quantify the improvement obtained by the ‘‘gree
wave’’ strategy, the overall network flow is plotted again
the cycle time~see Fig. 5! and compared with the synchro
nized strategy. The left diagram corresponds to the free-fl
case of the system. The density is chosen tor50.05 to en-
sure that moving vehicles are able to drive from one int
section to the next one without being constricted by stand
cars. Obviously, the green wave strategy with a prope
chosen offset parameter, i.e., for the considered street le
equal toTfree5Tdelay510, shows reasonable improvemen
over the strategy with synchronized traffic lights (Tdelay50,
N54). The whole spectrum of plotted cycle timesT for the
‘‘green wave’’ strategy exceeds the performance of the n
work with synchronized traffic lights or at least keeps t
performance. Moreover, comparing the green wave stra
to a network consisting of only one intersection, but with t
same total street length, one finds a remarkable agreeme
the curves. Note that every street in the considered netw
with N54 is intersected four times. We want to stress h
that for free-flow densities in the ChSch model, the ‘‘gre
wave’’ strategy is capable to pipe all vehicles through
streets, i.e., for the vehicles on the streets, it seems as if t
is only one intersection in the system left due to the fact t
the remaining ones are always green when approached b
vehicle cluster. Further, we want to point out that similar
the case with a synchronized strategy, the traffic lights in
act with the vehicles in such a way that a ‘‘green wave’’
established in the network independent of the initial vehi
distribution or the density fluctuations caused by the inter
stochasticity of the model. Recapitulating, one of the m
important benefits of the green wave strategy is the fact
a street with total lengthL consisting ofN street segments
each with a lengthD, behaves like a street intersected on
once ~see Fig. 5!. Therefore, the optimal cycle time of
traffic light corresponding to the maximal flow is shifte
towards realistic values@see Sec. III A, Case~a!# even for
small street segment lengthsD. One obtains the following
equation for the cycle time corresponding to maximal flo
@see Eq.~2!#:

Tmax5
L

2v free
5

ND

2v free
. ~8!

As one can see in the right part of Fig. 5, even for hi
densities, the ‘‘green wave’’ strategy shows an incisive i
pact to the network flow. Although by definition no ‘‘gree
wave’’ can be established at high densities~for the chosen
density ofr50.7 no jam-free state can exist!, an offset in the
switching between successive traffic lights may lead anyh
to an improved flow. The origin of this improvement is com
pletely different in comparison to the free-flow case. For lo
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densities, the dynamics is driven by vehicles organized
clusters that may move through the streets undisturbed du
the optimal strategy whereas the dynamics for high dens
is governed by the motion of large jams. Large jams mo
oppositely to the driving direction of the vehicles from on
intersection to the one before. Due to their spatial extens
an intersection is blocked for a certain time when trespas
by a jam. Thus, the optimal system state would be reache

FIG. 5. In order to compare the gain of a network operating w
a ‘‘green wave’’ strategy to a system with a synchronized strate
we plotted the flow against the cycle time for both systems. The
diagram shows the free-flow case of the system. As one can see
green wave strategy~time delayTdelay510) shows reasonable im
provements over the network with synchronized traffic ligh
Tdelay50. Moreover, for comparing the green wave strategy with
network consisting of only one intersection, but an equal total st
length, one finds a remarkable agreement. The bottom diag
shows the influence of the green wave strategy in the high-den
state. It is obvious that by definition, no green wave may be es
lished in the system because the density is too high, so tha
jam-free states may be obtained. Nonetheless, the performan
the network with synchronized traffic lights is exceeded by
‘‘green wave’’ strategy. The randomization parameter isp50.1 and
the maximum velocity isvmax55.
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ELMAR BROCKFELD et al. PHYSICAL REVIEW E 64 056132
a jam moves backward from one intersection to the one
fore and blocks it while the traffic light is red anyway so th
afterwards moving vehicles~outflow of the jam! may take
advantage of the green phase as much as possible. In fac
portion of time that an intersection is blocked or free det
mines the system flow. Note, that the time delay at h
densities has to be negative since jams move opposite to
driving direction. For a time delay in the order of the optim
time delay of the free-flow case@see Fig. 5 ~right! for
Tdelay5210# the curves corresponding to the ‘‘green wave
strategy and the synchronized traffic lights do not dif
much because thisTdelay is determined by the free vehicl
movement. Considering instead the velocity of a jam tha
approximately aboutv jam51/(12p) ~see@29#! and assuming
that the optimal time delay is the travel timeTjam5D/v jam
for the backward motion of a jam between two intersectio
the difference to the synchronized case gets transparent@see
Fig. 5 ~right! for Tdelay5255#. The ‘‘green wave’’ strategy
allows now a reasonable improvement over the synchron
strategy. Similar to the free-flow density case, the perf
mance of the network with synchronized strategy is
ceeded by the ‘‘green wave’’ strategy for almost all cyc
times. Moreover, comparing the ‘‘green wave’’ strategy w
an optimal time delay to an idealized ‘‘mini network’’ con
sisting of only one intersection, but with an equal total str
length, one finds a reasonable agreement between the c
as well. This indicates that for high densities, jams can
guided perfectly through the streets by a ‘‘green wave’’ str
egy. However, one has to recognize that strong oscillation
high densities depend on the statistics of the underlying
model so that the expected gain at these high densities
decrease with increasingp.

C. Random offset strategy

In this section, we want to point out that switching su
cessive traffic lights with a random shift instead of a fix
time delay may lead to a more flexible strategy, e.g., with
oscillations. Moreover, it will be shown that in contrast to
system with synchronized traffic lights, a random shift b
tween the intersections may lead to a remarkable higher
bal system flow. As in the previous section, the traffic ligh
are not enforced to switch simultaneously anymore. For
purpose, an individual offset parameterDTi , j is introduced
and assigned to every intersection~see previous section for
detailed explanation!. The offset parameter itself may tak
values betweenDTi , j50, . . . ,2T, which are chosen in the
following from an equally distributed random distribution.

To give an insight into the effects induced by rando
offsets, we depicted the throughput in the network in dep
dence of the cycle times in Fig. 6. The random offset strat
is compared to the ChSch model with synchronized strate
Obviously, the strong oscillations found in the curves cor
sponding to the synchronized strategy are destroyed by
randomness in the switching. Thus, the random offset s
egy leads to a smoothed curve that is very useful adjus
the optimal cycle times in a network. One is no longer forc
to pay strong attention to the cycle times such as thos
systems with synchronized or ‘‘green wave’’ strategies.
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The left part of Fig. 6 shows a system with free-flo
densityr50.05. The random offset strategy outperforms t
synchronized strategy only for relatively low-cycle times b
cause unfavorable states~states with minimal global flow!
are avoided by the randomness. For higher-cycle times,
global flow in a system with random offset strategy fa
clearly below the global flow in a system with synchroniz
strategy. In the case of a system with synchronized tra
lights, the curve converges in the limitT→` to the half of

FIG. 6. The random offset strategy is compared to the origi
ChSch model with synchronized traffic lights. The mean flow
plotted versus the traffic light periods for the two different stra
gies. The network consists ofN3N5100 intersections with 2N2

street segments each of lengthD5100 cells. Top: In the left part of
the figure, we chose a low-density~free-flow regime,r50.05). It
can be seen clearly that the oscillations found in the synchron
network are suppressed by the random offset strategy. Furtherm
in the free-flow density regime the random offset strategy sho
some advantages over the synchronized strategy, but only for
cycle times. Bottom: The oscillations for high densities (r50.70)
are suppressed in a similar manner as for the low-density cas
addition, the random offset strategy seems to outperform the
chronized strategy in the whole plotted area. The randomiza
parameter isp50.1 and the maximum velocity isvmax55.
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the flow found in the NaSch model. This corresponds to
case in which vehicles in the network are free to move in o
direction all the time while in the other direction, it comes
a complete stop. In contrast, the flow in the random off
strategy converges to zero since the switching is not sync
nous, and therefore, the traffic lights along one direction
green or red at random so that all vehicles are gathere
front of the red lights. Additionally, one has to consider th
although the random offset strategy is very effective for lo
cycle times, one may obtain higher flows with the ‘‘gre
wave’’ strategy.

At high densities (r50.70 in Fig. 6!, the oscillations are
suppressed in a similar manner as for the low-density c
Hence, as for low densities, this strategy gives an impro
flexibility when adjusting optimal cycle times in the networ
In addition, the random offset strategy outperforms the s
chronized strategy not only for low-cycle times, but also
the whole range plotted in Fig. 6 except for some peaks. O
obvious explanation for the profit out of the random
switching traffic lights is that parts of the network are co
pletely jammed, while in other parts of the network, the c
can move nearly undisturbed. However, the flow obtained
the ‘‘green wave’’ strategy is still remarkably higher than t
flow obtained by the random offset strategy. Furthermo
one has to consider that the strong oscillations at high d
sities depend on the statistics of the underlying NaS
model, so that the expected gain at this high densities
decrease with increasing randomization parameterp. Thus,
we want to point out that among the analyzed global stra
gies, the ‘‘green wave’’ strategy leads to the highest glo
flow in the network for free-flow densities, as well as f
high density states, while the ‘‘random offset’’ strategy pr
vides the greatest flexibility, hence the oscillations are s
pressed.

IV. SUMMARY AND DISCUSSION

We have analyzed the ChSch model, which combines
sic ideas from the Biham-Middleton-Levine model of ci
traffic and the Nagel Schreckenberg model of highway tr
fic. In our investigation, we focused on global traffic lig
control strategies and tried to find optimal model parame
in order to maximize the network flow. For this purpose,
started with the original formulation of the ChSch mod
where the traffic lights are switched synchronously. It
shown that the global throughput of the network stron
depends on the cycle times, i.e, one finds strong oscillat
in the global flow in dependence of the cycle times both
low, as well as for high densities. A simple phenomenolo
cal approach has been suggested for the free-flow regim
order to determine the characteristics in regard to the mo
parameters and to obtain a deeper insight into the dynam
in the network. The phenomenological results show a v
good agreement to numerical data and indicate that
choice of the underlying model for vehicle movement b
tween intersections does not play an important role. Thus
want to stress here that the global throughput in the Ch
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model is mainly determined by the travel times between
tersections, which depends on the length of the street
ments and the density and maximal velocity of the cars.

In order to allow a more flexible traffic light control th
ChSch model was enhanced by an additional model par
eter. This parameter is assigned to every intersection re
senting a time offset, so that the traffic lights are not enforc
to switch simultaneously anymore. A two-dimension
‘‘green wave’’ is implemented with the help of this param
eter. The ‘‘green wave’’ gives much improvement to th
flow in comparison to the synchronized strategy at low d
sities and has even an incisive impact on the throughpu
high densities. Moreover, it is shown that the influence
intersections along a street is completely avoided by
‘‘green wave’’ strategy because the results may be compa
with results obtained from a system containing only o
single intersection instead of many others. Although
‘‘green wave’’ strategy is capable to give a strong improv
ment, the dependence between flow and the cycle time fo
in the original ChSch model remains. Thus, to avoid the
strong oscillations, we further analyzed a network whe
traffic lights are switched at random. It is shown that t
strong oscillations found for a synchronized strategy and
the ‘‘green wave’’ strategy are completely suppressed
randomness. Thus, the random offset strategy may be
useful if a control strategy is required that is not very sen
tive to the adjustment of the cycle times. Moreover, the r
dom offset strategy outperforms the standard ChSch mo
with synchronized traffic lights at low densities for sma
cycle times and at high densities for all cycle times. A
explanation for the profit at high densities is the fact th
some parts of the network are completely jammed, while
other parts of the network, the cars can move nearly un
turbed. This additional gain due to the inhomogeneous a
cation of vehicles indicates that an autonomous traffic li
control based on local decisions could be more effective t
the analyzed global shemes. In@30#, Faieta and Huberman
investigated an autonomous traffic light strategy that show
very good performance. Results of simulations with t
ChSch model about the impact of traffic lights that are a
tonomously adapted to the traffic conditions by suitable
rameters will be presented in@31#.

To conclude, the results presented here are of prac
relevance for various applications of city traffic. Due to
simplicity, cellular automata models have become qu
popular for large-scale computer simulations whereby es
cially city traffic with its complex network topology is one o
the favorable applications. In particular, the knowledge
the impact of topological factors in regard to certain traf
control strategies may be very benefiual when studying v
ous kinds of city networks, even those with a more sophi
cated topology than those implemented in the ChSch mo

ACKNOWLEDGMENTS

We thank Torsten Huisinga, Wolfgang Knospe, and A
dreas Pottmeier for useful discussions.
2-11



g

es

el-

e

a

k,

ys.

en-

en-

rg,

ELMAR BROCKFELD et al. PHYSICAL REVIEW E 64 056132
@1# Traffic and Granular Flow, edited by D.E. Wolf, M. Schreck-
enberg, and A. Bachem~World Scientific, Singapore, 1996!.

@2# Traffic and Granular Flow ‘97, edited by M. Schreckenber
and D.E. Wolf~Springer, New York, 1998!.

@3# Traffic and Granular Flow ‘99, edited by D. Helbing, H.J.
Herrmann, M. Schreckenberg, and D.E. Wolf~Springer, New
York, 2000!.

@4# I. Prigogine and R. Herman,Kinetic Theory of Vehicular Traf-
fic ~Elsevier, Amsterdam, 1971!.

@5# C.F. Daganzo, M.J. Cassidy, and R.L. Bertini, Transp. R
Part A 33, 365 ~1999!.

@6# D. Helbing, Verkehrsdynamik: Neue Physikalische Mod
lierungskonzepte~Springer, New York, 1997!.

@7# D. Helbing, e-print cond-mat/0012229.
@8# D. Chowdhury, L. Santen, and A. Schadschneider, Phys. R

329, 199 ~2000!; Curr. Sci. 77, 411 ~1999!; Compos. Sci.
Technol.2~5!, 80 ~2000!.

@9# S. Wolfram, Theory and Applications of Cellular Automat
~World Scientific, Singapore, 1986!.

@10# D. Chowdhury and A. Schadschneider, Phys. Rev. E59,
R1311~1999!.

@11# A. Schadschneider, D. Chowdhury, E. Brockfeld, K. Klauc
L. Santen, and J. Zittartz,Traffic and Granular Flow ‘99
~Springer, New York, 2000!.

@12# O. Biham, A.A. Middleton, and D. Levine, Phys. Rev. A46,
R6124~1992!.

@13# K. Nagel and M. Schreckenberg, J. Phys. I2, 2221~1992!.
@14# J. Krug, Phys. Rev. Lett.67, 1882~1991!.
05613
.,

p.

@15# T. Nagatani, J. Phys. Soc. Jpn.62, 1085~1993!.
@16# S. Tadaki and M. Kikuchi, Phys. Rev. E50, 4564~1994!.
@17# T. Nagatani, Physica A198, 108 ~1993!.
@18# T. Nagatani and T. Seno, Physica A207, 574 ~1994!.
@19# F.C. Martinez, J.A. Cuesta, J.M. Molera, and R. Brito, Ph

Rev. E51, 175 ~1995!.
@20# T. Nagatani, Phys. Rev. E48, 3290~1993!.
@21# R. Barlovic, L. Santen, A. Schadschneider, and M. Schreck

berg, Eur. Phys. J. B5, 793 ~1998!.
@22# W. Knospe, L. Santen, A. Schadschneider, and M. Schreck

berg, J. Phys. A33,48, 477 ~2000!.
@23# W. Brilon and N. Wu,Traffic and Mobility ~Springer, New

York, 1998!.
@24# H. Emmerich and E. Rank, Physica A234, 676 ~1997!.
@25# D. Helbing and M. Schreckenberg, Phys. Rev. E59, R2505

~1999!.
@26# R. Barlovic, A. Schadschneider, and M. Schreckenbe

Physica A294, 525 ~2001!.
@27# K. Nagel and M. Paczuski, Phys. Rev. E51, 2909~1995!.
@28# E. Brockfeld, Diploma thesis, Universita¨t Osnabru¨ck, 2000.
@29# L. Neubert, H.Y. Lee, and M. Schreckenberg, J. Phys. A32,

6517 ~1999!.
@30# B. Faieta and B.A. Huberman,Firefly: A Synchronization

Strategy for Urban Traffic Control~Xerox Palo Alto Research
Center, Palo Alto, CA, 1993!.

@31# R. Barlovic, A. Schadschneider, and M. Schreckenberg~un-
published!.
2-12


